

myGenome is the most comprehensive preventive genetic test for healthy patients

myGenome is the genome sequencing and interpretation service intended to help prevent diseases and improve the health of your patients. The test provides key genetic information to the patient and his or her physician in order to adapt the individual's lifestyle and medical care. The test is intended for healthy individuals that want to be proactive in their healthcare.

myGenome INCLUDES:

- » Whole GENOME sequencing from a saliva or blood sample obtained with a Veritas kit.
- » Analysis of genes related to actionable diseases with clinical utility.
- » Genetic information storage for future consultations.

myGenome has been developed by experts in genetics, bioinformatics and specialized physicians from the Harvard School of Medicine with more than 10 years of experience in the study and analysis of the human genome.

WHY SEQUENCE THE GENOME?

15-20%

Between 15-20%¹ of cancer cases are due to familial aggregation that increases the risk of cancer in the family.

3%

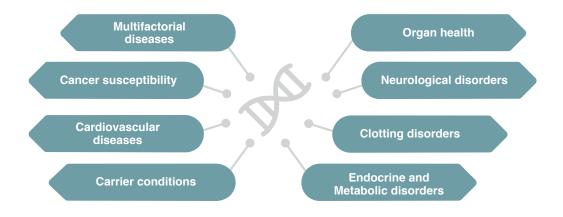
Around 3%² of the couples planning to have children have a 25% risk of having a child affected by a genetic disease.

15-20%

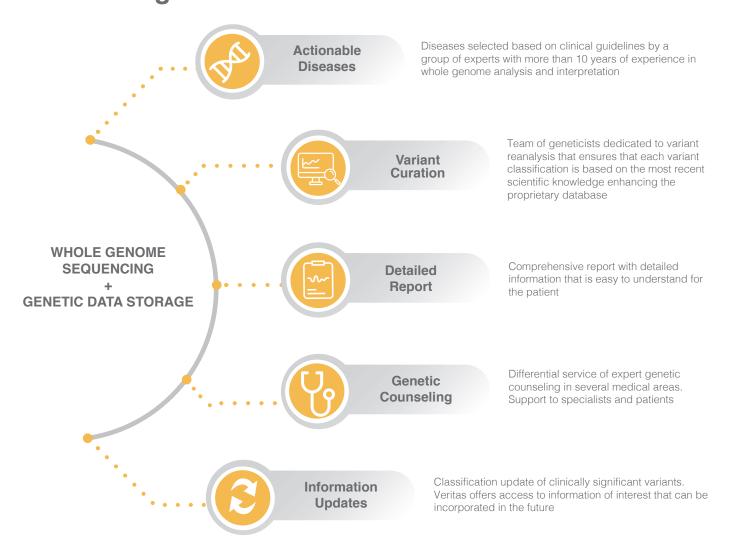
Between 15-20%3 of sudden cardiac deaths are due to genetic variations in genes responsible for the structure of the cardiac muscle or the cardiac rhythm.

6%

Around 6%⁴ of the population have an increased risk of developing hereditary thrombosis. Acquired factors such as bed rest or lack of physical activity increase the risk

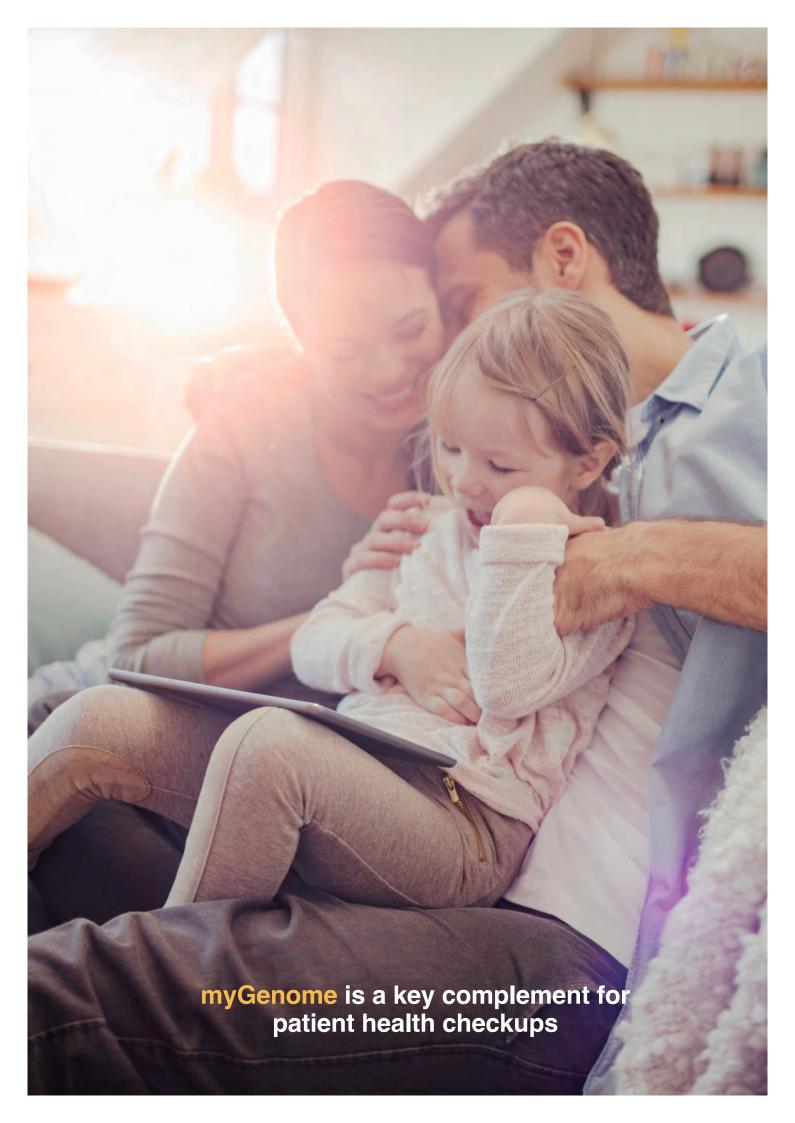


3-5%

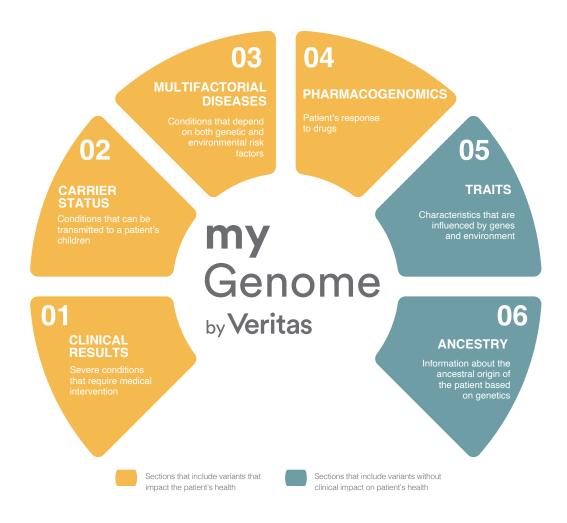

Between 3-5%⁵ of hospital admissions in Europe are due to adverse drug reactions.

WHAT TYPE OF DISEASES ARE INCLUDED?

- » Diseases selected based on the American College of Medical Genetics and Genomics criteria that emphasizes the importance of analyzing cardiovascular diseases and risk of hereditary cancer, since they are the most frequent and actionable diseases.
- » More than 650 diseases are reported in the following categories:



Advantages



| Clinical Examples

Consider consulting a Pathogenic variant Risk of hypertrophic cardiomyopathy Heart defect associated with sudden cardiologist for counseling and in MYBPC3 gene cardiac death follow-up Breast cancer risk Establish a specific gynecological Pathogenic variant Women have 2-4 times greater risk of screening plan and personalized breast cancer and other cancers such as in ATM gene follow-up with a physician pancreatic Risk of malignant hyperthermia When surgery is required, notify Hypermetabolic reaction to muscle Pathogenic variant the anesthesiologist to change relaxants commonly used in surgery, in RYR1 gene the pharmacological prescription causing stiffness, tachycardia, fever and accordingly muscle breakdown Inform the specialist in case of Pathogenic variant Risk of venous thrombosis 5% risk of deep vein thrombosis surgery, prolonged rest, in *F5* gene pregnancy, etc.

Report Sections

1 Clinical results

Interpretation of 566 genes selected based on the American College of Medical Genetics and Genomics criteria, related to conditions that have an important impact on the patient's health. Full gene analysis is performed reporting pathogenic and likely pathogenic variants. This information is key to personalize medical management.

2 Carrier status

Analysis of over 200 diseases where the patient can be an asymptomatic carrier. If both members of the couple are carriers of the same disease, they have a higher risk of transmitting it to their children.*

3 Multifactorial diseases

Analysis of specific variants related to multifactorial conditions where both genetic and environmental risk factors are involved. This information allows the adaptation of patient's lifestyle based on genetics.

4 Pharmacogenomics

myGenome analyzes genes related to metabolism, secondary drug targets and transporters in order to know the effect of more than 150 pharmaceuticals on the patient, which allows a personalized prescription. The drugs analyzed are included in the following medical areas:

- Cardiovascular
- Hematology
- Infectious diseases and immune disorders
- Oncology

- Transplantation Medicine
- Pain Medicine
- Gastroenterology
- Neurology

Veritas also includes the analysis of traits that do not have a clinical impact on the patient's health, but allow to make informed decisions based on genetics. The following traits are analyzed:

Athleticism

- Achilles Tendinopathy
- Exercise Response
- Ligament Injury
 Susceptibility
- Lumbar Disc Disease
- Susceptibility
- Muscle Strength
- Muscle Volume
- Muscular Endurance
- Muscular Power

Longevity

- Longevity

Metabolism

- Metabolic Syndrome
- Resting Metabolic Rate
- Weight Gain
- Obesity

Immune system

- IL-6 Levels

Cardiovascular

- Blood Pressure
- Baseline Cholesterol

Nutrition and Diet

- Polyunsaturated Fats
- Vitamin B12
- Vitamin B6
- Vitamin C
- Vitamin D
- Vitamin E

Behavior

- Hunger Response Control
- Snacking Behavior
- Sugar Intake
- Sweet Tooth

Hormones

- IGF-1 Levels
- Menopause Age
- Testosterone Levels

Substance reaction

- Alcohol Sensitivity
- Coffee and Caffeine
- Nicotine Response

Physical appearance

- Earwax Type
- Eye Color
- Finger Length Ratio
- Freckling
- Hair Color
- Hair Curl
- Hair Thickness
- Height
- Iris Patterns
- Male Pattern Baldness
- Pigmentation

Sensory perception

- Asparagus Metabolite Odor Detection in Urine
- Bitter Taste Perception
- Cilantro (Coriander) Preference
- Misophonia (Sensitivity to Chewing Sounds)
- Nearsightedness (Myopia)
- Odor Detection
- Pain Sensitivity
- Photic Sneeze Reflex
- Sweetness Detection

6 Ancestry

myGenome analyzes variants in the DNA to establish the ancestral origin of the patient based on genetics.

Genes with clinical interpretation

ABCC8	ATP7B	CDH1	CYP11B1	ERCC1	FKBP14	HFE	LIPA	MYCN	PAX5	PSEN2	RPS28	SLMAP	TP53
ABCC9	ATR	CDK4	CYP11B1 CYP11B2	ERCC2	FKRP	HIP1	LITAF	MYH11	PAA5 PC	PTCH1	RPS29	SLX4	TPM1
ABCD1	AURKA	CDKN1B	CYP19A1	ERCC3	FKTN	HLCS	LMF1	МҮН6	PCDH15	PTCH2	RPS7	SMAD3	TPP1
ABCG5	AXIN2	CDKN1C	CYP1B1	ERCC4		HMBS	LMNA	MYH7	PCSK9	PTEN	RTEL1	SMAD4	TRDN
					FLCN								
ABDAYAC1	B3GALT6	CDKN2A	CYP21A2	ERCC5	FXN	HMMR	LPL	MYL2	PDCD10	PTPN11	RUNX1	SMARCA4	TRIM37
ABRAXAS1	B4GALT7	CEBPA	CYP27A1	ERCC6	G6PC	HNF1A	LRPPRC	MYL3	PDGFRA	PYGM	RYR1	SMARCB1	TRIM63
ACADM	BAG3	CEBPE	DCLRE1C	ESR1	G6PC3	HOXB13	LSP1	MYLK	PDLIM3	RAD50	RYR2	SMARCE1	TRMU
ACADSB	BAP1	CEP57	DDB2	ETFDH	G6PD	HPS1	LTBP2	MYLK2	PEX12	RAD51	SACS	SMPD1	TRPM4
ACADVL	BARD1	CERKL	DDR2	ETV6	GAA	HRAS	LZTR1	MYO6	PEX6	RAD51B	SALL4	SNTA1	TSC1
ACD	BBS1	CETP	DDX41	EVC	GALC	HSPB8	MAP2K1	MYO7A	PHB	RAD51C	SBDS	SOS1	TSC2
ACSF3	BBS2	CFTR	DES	EXO1	GALK1	HYLS1	MAP2K2	MYOM1	PHOX2B	RAD51D	SCN1B	SPG11	TSFM
ACTA1	BCHE	CHEK2	DHCR7	EXT1	GALNT12	IKZF1	MAP3K1	MYOZ2	PICALM	RAD54L	SCN2B	SPINK1	TSHR
ACTA2	BCKDHA	CHRM2	DICER1	EXT2	GALT	ILK	MAX	MYPN	PIK3CA	RAF1	SCN3B	SREBF2	TTN
ACTC1	BCKDHB	CHRNE	DIS3L2	EYA4	GATA1	ITK	MC1R	NBN	PKD2	RANGRF	SCN4B	SRGAP1	TTR
ACTN2	BLM	CHST14	DKC1	EYS	GATA2	IVD	MCOLN1	NDRG1	PKHD1	RB1	SCN5A	STAT3	TXNRD2
ACVRL1	BMPR1A	CLN5	DMD	EZH2	GATAD1	JAG1	MED17	NDUFS6	PKP2	RBBP8	SCO2	STK11	TYR
ADAMTS2	BRAF	CLRN1	DNAJC19	F11	GBA	JAK2	MEFV	NEBL	PLA2G2A	RBM15	SDHA	SUFU	UROD
AGA	BRCA1	CNGB3	DOCK8	F5	GBE1	JPH2	MEN1	NEFL	PLN	RBM20	SDHAF2	TAZ	USB1
AGL	BRCA2	COL1A1	DOLK	F8	GCDH	JUP	MESP2	NEXN	PLOD1	RECQL	SDHB	TBX20	USH2A
AIP	BRIP1	COL1A2	DPP6	F9	GCKR	KCNA5	MET	NF1	PMM2	RECQL4	SDHC	ТВХ3	VCL
AIRE	BTD	COL3A1	DPYD	FAH	GDF2	KCND3	MGMT	NF2	PMP22	RET	SDHD	TBX5	VHL
AKAP9	BUB1B	COL5A1	DSC2	FAM161A	GEN1	KCNE1	MIB1	NHP2	PMS1	RHBDF2	SEC23B	TCAP	WAS
AKT1	CACNA1C	COL5A2	DSE	FAN1	GJA5	KCNE2	MITF	NKX2-5	PMS2	RINT1	SELENON	TCIRG1	WRAP53
ALDOB	CACNA1S	COL7A1	DSG2	FANCA	GJB2	KCNE3	MKS1	NODAL	POLD1	RIT1	SEPSECS	TECPR2	WRN
ALK	CACNA2D1	COX15	DSP	FANCB	GJB6	KCNE5	MLC1	NOP10	POLE	RMRP	SERPINA1	TERC	WT1
ALMS1	CACNB2	CPT1A	DTNA	FANCC	GLA	KCNH2	MLH1	NOTCH1	POLG	ROBO2	SGCB	TERT	XPA
ALPL	CALM1	CPT2	DYSF	FANCD2	GLB1	KCNJ2	MLH3	NOTCH3	POLH	ROS1	SGCD	TGFB2	XPC
ANK2	CALM2	CREB3L3	EFEMP2	FANCE	GLE1	KCNJ5	MPL	NPHS1	POT1	RPE65	SGCG	TGFB3	XRCC2
ANKRD1	CALR3	CREBBP	EGFR	FANCF	GNE	KCNJ8	MPV17	NPPA	PPM1D	RPL11	SH2D1A	TGFBR1	XRCC3
APC	CASP8	CRELD1	EGLN1	FANCG	GPC3	KCNQ1	MPZ	NQO2	PPT1	RPL15	SHOC2	TGFBR2	ZBTB17
APOA4	CASQ2	CRYAB	EGLN2	FANCI	GPD1L	KIF1B	MRE11	NRAS	PRDM16	RPL26	SLC12A3	TINF2	ZHX3
APOA5	CASR	CSRP3	EGR2	FANCL	GPIHBP1	KIT	MSH2	NSD1	PRDM5	RPL27	SLC12A6	TLR2	ZIC3
APOB	CAV3	CTC1	ELANE	FANCM	GREM1	KLF10	MSH3	NTHL1	PRF1	RPL31	SLC17A5	TMEM127	ZNF469
APOC2	CAVIN4	CTF1	ELN	FAS	H19	KLLN	MSH6	ODC1	PRKAG2	RPL35A	SLC22A5	TMEM43	
APOE	CBL	CTLA4	ELP1	FAT1	HABP2	KRAS	MSR1	OPA3	PRKAR1A	RPL5	SLC25A13	TMPO	
AR	CBS	CTNNA1	EMD	FBN1	HADHA	LAMA2	MTAP	OPCML	PRKDC	RPS10	SLC25A15	TNNC1	
ARID5B	CBX8	CTNNB1	ENG	FBN2	HAX1	LAMA4	MTHFR	OTC	PRKG1	RPS19	SLC25A4	TNNI3	
ARSA	CCM2	CTNS	EP300	FGFR2	HBB	LAMP2	MUT	PAH	PRKN	RPS20	SLC26A2	TNNT2	
		CTRC	EPAS1	FGFR2 FH	HCN4		MUTYH	PAH PALB2	PRNP			TNXB	
ASNS	CCND1					LDB3				RPS24	SLC26A4		
ASPA	CD82	CYBA	EPCAM	FHL1	HEXA	LDLR	MXI1	PALLD	PRSS1	RPS26	SLC2A10	TOR1A	
ATM	CDC73	CYLD	ERBB2	FHL2	HEXB	LDLRAP1	MYBPC3	PARN	PSEN1	RPS27	SLC39A13	ТОХЗ	

my Genome

+650

Diseases of hereditary origin

+225

Conditions that you may pass on to your children

15

Multifactorial conditions, included in the "Risks" section of the report

+150

Information about drug sensitivities

450

Information on genetic traits related to diet, athletics, longevity, nutrition, behavior, cardiovascular health, metabolism and immune system

Comprehensive Genetic Counseling pre and post test

Information about your ancestors

| Technical Information

- » Whole genome sequencing with an average depth of 30x (gold standard for genome sequencing).
- » Analytic sensitivity is 99% for SNVs* and 97.6% for small insertions/deletions (6 bases).
- » Analysis and variant classification based on internal and external databases (ClinVar and HGMD**).
- » Variant curation performed by our dedicated expert team with proprietary software developed for detailed variant classification.
- » myGenome has been developed by a medical expert team with more than 10 years of experience in Whole Genome Sequencing, including members of the Personal Genome Project from the Harvard Medical School.

References

- 1. https://seom.org/informacion-sobre-el-cancer/consejo-genetico.
- 2. Rotem BS et al. A Data-Driven Evaluation of the Size and Content of Expanded Carrier Screening Panels. Genetics in Medicine.doi:10.1038/s41436-019-0466-5
- 3. Orland KM et al. Molecular Autopsy for Sudden Cardiac Death: Current State and Considerations. Current Genetic Medicine Reports. 2019. https://doi.org/10.1007/s40142-019-00170-x
- 4. MacCallum P, et al. Diagnosis and management of heritable thrombophilias. BMJ 2014;349:g4387.
- 5. Bouvy JC et al. Epidemiology of Adverse Drug Reactions in Europe: A Review of Recent Observational Studies. Drug Saf 2015;38:437–453
- » Bagnall RD et al. A Prospective Study of Sudden Cardiac Death among Children and Young Adults. N Engl J Med 2016;374;25.
- » Mellor G et al. Genetic Testing in the Evaluation of Unexplained Cardiac Arrest. Circ Cardiovasc Genet. 2017;10:e001686.
- » Mandelker D et al. Navigating highly homologous genes in a molecular diagnostic setting: a resource for clinical next-generation sequencing. Genet Med 2016;18:1282-1289.
- » Landrum MJ et al. ClinVar: public archive of interpretations of clinically relevant variants. Nuc Acids Res 2016;44(1):D862–D868. doi: 10.1093/nar/gkv1222. PMID 26582918.
- » Zook JM. et al. Extensive sequencing of seven human genomes to characterize benchmark reference materials. Sci Data 2016;3:160025 doi: 10.1038/sdata.2016.25.
- » Richards S et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405-424. PMID 25741868.
- » Stenson PD et al. The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet 2017;136:665-677.
- » Whirl-Carrillo M. et al. Pharmacogenomics Knowledge for Personalized Medicine. Clin Pharmacol Ther. 2012; 92:414-417. PMID 22992668.
- » S. Kalia et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med. 2017 Feb;19(2):249-255. doi: 10.1038/gim.2016.190. Epub 2016 Nov 17.
- » M. Lindor et al. Whole-Genome sequencing in healthy people. Mayo Clin Proc. January 2017;92(1):159-172 http://dx.doi.org/10.1016/j.mayocp.2016.10.019.

^{*}Single Nucleotide Variants / **Human Gene Mutation Database

Veritas is *The Genome Company*. Our mission is to deliver on the promise of the human genome, empowering people to maximize quality and length of life for themselves and their families.

As the first company to introduce **WHOLE GENOME SEQUENCING** and its interpretation to consumers and their physicians, we lead by relentlessly pushing the boundaries of science and technology while driving down the cost of the genome.

Founded in 2014 by leaders in genomics from Harvard Medical School, Veritas has been recognized by MIT Technology Review as one of the 50 Smartest Companies in 2016 and 2017, by Fast Company as one of the world's most innovative health companies in 2018, and by CNBC as one of the Disruptor 50 Companies in 2018 and 2019.

Veritas Intercontinental was founded in 2018 to lead the expansion of the Veritas' brand and genetic services in Europe, Latin America, the Middle East, and Japan.

info@skymedical.us skymedical.us

